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Abstract
We consider an optimal control problem for a single-spot pulsed laser welding
problem. The distribution of thermal energy is described by a quasilinear heat
equation. Our emphasis is on materials which tend to suffer from hot cracking when
welded, such as aluminum alloys. A simple precursor for the occurrence of hot cracks
is the velocity of the solidification front. We therefore formulate an optimal control
problem whose objective contains a term which penalizes excessive solidification
velocities. The control function to be optimized is the laser power over time, subject
to pointwise lower and upper bounds. We describe the finite element discretization
of the problem and a projected gradient scheme for its solution. Numerical
experiments for material data representing the EN AW 6082-T6 aluminum alloy
exhibit interesting laser pulse patterns which perform significantly better than
standard ramp-down patterns.
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1 Introduction
Pulsed laser welding is a standard technology to merge metal or thermoplastic compo-
nents. Its advantages are the narrow spatial concentration and high peak power of the
heat source, as well as the opportunity to quickly and frequently adjust the laser power
in time. However, in comparison to continuous wave laser processes, pulse laser welding
is reported to have an elevated tendency to produce hot cracks during the solidification
phase due to higher cooling and thus strain rates. While small hot cracks do not necessar-
ily affect the strength of the welding seam, they may impair the air- and water-tightness.
Avoiding hot cracks is particularly difficult for the welding of certain aluminum alloys, e.
g., some of the 2XXX, 5XXX and most of the 6XXX series, which remains a challenging
engineering problem [3, 10, 19].

Previous analyses have shown the potential to reduce hot cracking by varying the laser
power profile in pulsed laser welding; see, e. g., [3, 9]. In this paper, we propose an optimal
control approach to find power profiles which are optimal in a certain sense. We concen-
trate on single-spot pulsed laser welding problems with a view towards aluminum alloy
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welding. Since welding seams consist of multiple, partially overlapping welding spots, this
work constitutes a significant first step towards the optimization of entire welding seams.

In order to obtain a sufficiently realistic forward model of heat distribution, we need to
take into account several physical effects, including temperature dependent heat capac-
ity and thermal conductivity, the enthalpy of fusion and convective heat transfer. From
the mathematical point of view, this results in a quasilinear heat equation. Evaporation
of metal will be disregarded, as well as fluidic motion inside the weld pool. The thermal
energy incurred through the laser into the welded component is modeled through a heat
flux boundary condition. Our objective or cost functional takes into account, among other
things, the speed of solidification in order to avoid or reduce the appearance of the hot
cracks.

The emphasis of our contribution lies with the description of the quasilinear heat equa-
tion model, the formulation of an appropriate cost function, as well as the numerical solu-
tion of a discretized version of the optimal control problem by a projected gradient descent
scheme. One of the terms of the objective functional which penalizes excessive solidifica-
tion velocities is rather non-standard and was designed specifically for this problem.

The material is structured as follows. In Sect. 2, we discuss the quasilinear heat equa-
tion representing the forward model. The optimal control problem is described in Sect. 3.
Its discretization is detailed in Sect. 4, where we also present a reduction of the three-
dimensional setup to the radially symmetric case. Section 5 is devoted to the presentation
of optimized laser pulse profiles under various conditions.

2 Modelling
The aim of this section is to derive step-by-step a mathematical model for a single-spot
pulsed laser welding problem of aluminum alloys in a cylindrical domain. To this end, let
� ⊂ R

3 be an open, orthogonal circular cylinder and � =
⋃4

i=1 �i be its boundary surface
(see Fig. 1). Here �1 is the portion of the boundary affected by the laser beam radiation.
We denote by θ (x, t) the temperature at the point x ∈ � at time t ∈ [0, T].

We are going to describe the temperature evolution inside �, and hence the evolution
of the welding process, as a solution to a boundary value problem based on the quasilinear
heat equation. The applied nature of the problem provides a few modelling challenges such
as temperature dependent properties of the material, liquid/solid phase transition, and
a combination of multiple heat transfer mechanisms. These challenges are sequentially
addressed in the following subsections, resulting in a complete model.

2.1 Enthalpy of fusion and volumetric effective heat capacity
Unlike standard heat dissipation problems when the considered material remains in the
same state of matter and its physical properties remain essentially uniform, we deal with
a phase transition during the heating and the cooling stages. These phase transitions are
accompanied by an absorption or a release of energy. The required amount of additional
energy needed to be provided to a specific quantity of the substance to change its state
from a solid to a liquid (at constant pressure) is called the enthalpy of fusion or the (la-
tent) heat of fusion. For the opposite transition from a liquid to a solid state the heat of
solidification has the same absolute value but its sign is reversed.

These phenomena are often modeled in terms of the classical Stefan problem, which
is a particular kind of a boundary value problem describing the evolution of a moving
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Figure 1 Cylinder � and its boundaries

boundary between two phases of a material undergoing a phase change; see for instance
[8]. In addition to the underlying heat equation, initial and boundary conditions, the Ste-
fan condition is required to provide the energy balance on the phase transition interface.
However, in the present paper we use another approach to integrate the enthalpy of fusion
into the boundary value problem. Due to the mixed composition of aluminum alloys, we
have a wide temperature corridor (rather than a single melting temperature) within which
the material melts from a solid to a liquid state. The temperature below which the material
is fully solid is called solidus. The temperature above which the material is fully liquid is
called liquidus. In the current study we consider solidus = 858 K and liquidus = 923 K as
reference values.

Considering the above, it becomes more natural in our case to embed the enthalpy of
fusion directly into the heat equation by means of the heat capacity coefficient. In a stan-
dard heat dissipation problem with no phase transition, the heat capacity coefficient c(θ )
is a temperature dependent function such that

∫ θ1
θ0

c(θ ) dθ describes the amount of energy
required to heat a unit mass of the material from temperature θ0 to temperature θ1. In the
present model we substitute the heat capacity with an effective heat capacity denoted by
ceff(θ ). The latter coefficient coincides with c(θ ) outside the solidus–liquidus temperature
corridor but has significantly higher values inside, which is meant to achieve the same
equality: the total amount of energy required to heat a unit mass of the material from
temperature θ0 to temperature θ1 (including the enthalpy of fusion if applicable on the
interval) is given by the integral

∫ θ1
θ0

ceff(θ ) dθ .
Another effect to be taken into account is that the density ρ of aluminum alloys changes

significantly over the temperature regime under consideration due to thermal expansion
and contraction. However, considering variable volume of the material would lead to a
free boundary problem, which significantly increases the complexity of the model. We
therefore take volume changes into account through a temperature dependent density.
Overall, this leads to an effective volumetric heat capacity s(θ ) = ceff (θ )ρ(θ ) in our heat
equation.

For the aluminum alloys under consideration, reference values of volumetric heat ca-
pacity are given in both the fully solid and the fully liquid state of matter. These values
show a good linear approximability within a fixed state of matter. Therefore, we construct
s(θ ) using the following procedure:
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Figure 2 Effective volumetric heat capacity s(θ ) and effective thermal conductivity κ (θ ) constructed using a
spline fitting procedure

(i) We perform a linear least-squares approximation to the experimental data
independently in the solid and in the liquid state of matter.

(ii) We choose a C1 cubic spline by filling the liquidus–solidus temperature gap with
the uniquely defined cubic polynomial.

(iii) In the liquidus–solidus interval, we add without loss of smoothness a cubic spline
(consisting of two cubic polynomials) whose integral over the considered interval is
equal to the enthalpy of fusion of the selected alloy.

We do not present the above procedure in terms of cumbersome formulas but limit
ourselves here to a plot of the resulting effective volumetric heat capacity function; see
Fig. 2 (left).

2.2 Effective thermal conductivity
Convective heat transfer in the liquid phase becomes the next modeling challenge caused
by the phase transition. Due to the Marangoni effect, see [12, 13], once the solidus point is
passed, the heat transfer in the melting pool significantly increases in radial direction and
decreases in axial direction (see Fig. 1 for the coordinate axes). In order to not include the
convection term into the core equation we approximate linearly the thermal conductivity
coefficient κ(θ ) to its measured values in the solid state, and then extrapolate it (separately
for the radial and the axial directions) to the temperatures above the liquidus with experi-
mentally selected constants. Convective heat transfer in the angular direction is assumed
to be zero. As a result, we have a matrix-valued effective thermal conductivity function
κ(θ ) = diag(κax(θ ),κrad(θ ), 0) in diagonal form in a cylindrical coordinate system.

The exact algorithm used for constructing κ(θ ) (and also s(θ )) can be inspected in
code in [16, optipuls.coefficients]. We provide a plot of κrad(θ ) and κax(θ ); see
Fig. 2 (right). Numerical simulations based on these assumptions have shown reasonable
correspondence to the real experiments, [2].

2.3 Boundary conditions
While some studies considered the energy introduced by the laser as a volumetric energy
source, in this paper we use flux boundary conditions on the boundary part �1 for this
purpose:

κ
(
θ (x, t)

)∂θ (x, t)
∂n

= –ηpdmaxu(t).
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Here η is the absorption coefficient of the material, pdmax is the power density of the laser
beam, and u(t) is the control function with values in [0, 1]. Since the power distribution
of the laser beam is taken to be uniform across �1 in the current study, the power density
is assumed to be constant and hence can be evaluated as the ratio of the maximal total
power to the area of the affected spot. The absorption coefficient η is also assumed to be
constant.

The cooling of the body is a result of the heat flux through the entire boundary except
�3; see Fig. 1. For simplicity we assume zero heat flux through �3, which is a reasonable
approximation when the radius of � is sufficiently large. On the remaining parts of the
boundary, we distinguish convective and radiative heat fluxes modelled as

κ
(
θ (x, t)

)∂θ (x, t)
∂n

= h
(
θ (x, t) – θamb

)

and

κ
(
θ (x, t)

)∂θ (x, t)
∂n

= k
(
θ (x, t)4 – θ4

amb
)
,

respectively; see for instance [14, Chap. 3]. Here k = 2.26 · 10–9 W/m2K4 and h = 5 W/m2

are the radiative and the convective transfer coefficients, respectively, and θamb denotes
the ambient temperature.

2.4 Summary of model equations
Let us summarize our model based on the above considerations. We recall that � ⊂R

3 is
an open, orthogonal circular cylinder and � =

⋃4
i=1 �i is its boundary surface as shown in

Fig. 1. The temperature distribution in � is governed by the quasilinear heat equation

s
(
θ (x, t)

)∂θ (x, t)
∂t

= div
(
κ
(
θ (x, t)

)
grad θ (x, t)

)
, (2.1)

where the temperature-dependent coefficients s(θ (x, t)) = ceff (θ (x, t))ρ(θ (x, t)) and κ(θ (x, t)
are constructed as C1 cubic splines as detailed in reference [16, optipuls.coeffi-
cients].

Since we consider single-spot welding, the initial temperature θ (x, 0) inside � is assumed
to be constant and equal to the ambience temperature θamb:

θ (x, 0) = θamb in �. (2.2)

The boundary conditions for (2.1) are

κ
(
θ (x, t)

)∂θ (x, t)
∂n

=

⎧
⎪⎨

⎪⎩

k(θ (x, t)4 – θ4
amb) + h(θ (x, t) – θamb) – ηpdmaxu(t) on �1,

k(θ (x, t)4 – θ4
amb) + h(θ (x, t) – θamb) on �2 ∪ �4,

0 on �3.

⎫
⎪⎬

⎪⎭
(2.3)

We recall that k, h, pdmax and θamb are known constants. Moreover, u(t) is the control
function we seek to determine. It takes values in [0, 1] and represents the fraction of the
maximal laser power to be emitted as a function of time.



Herzog and Strelnikov Journal of Mathematics in Industry            (2023) 13:4 Page 6 of 18

3 Optimal control problem
In this section we construct the objective functional as a sum of independent penalty
terms. Each term serves a different purpose with relation to the single-spot welding appli-
cation. As imposed by the application, the desired optimal control representing the emit-
ted laser power profile should

(1) provide sufficient welding penetration;
(2) avoid hot cracking during the solidification stage;
(3) ensure complete solidification after welding within the preselected time

interval [0, T];
(4) minimize the total energy consumed by the laser.
In the following subsections we present and discuss four penalty terms designed to tar-

get of one these requirements each. We mention that similar, preliminary ideas were al-
ready presented in [1] but with little detail and discussion.

3.1 Welding penetration penalty
In order to guarantee the successful completion of the welding stage we must ensure that
the melting pool has reached a certain predefined depth. At the same time, exceeding of
this depth would result in an unnecessary increase in energy consumption and the time
required for cooling. Therefore, we select a target point xtarget on the symmetry axis of
� and a target temperature θtarget and formulate a term which penalizes the difference
between the maximal temperature reached at xtarget and the target temperature θtarget:

Jpenetration =
βpenetration

2
(∥
∥θ (xtarget, ·)

∥
∥

Lp(0,T) – θtarget
)2. (3.1)

Here p is sufficiently large so that the Lp-norm, which is chosen for simplicity and to avoid
non-differentiabilities and state constraints, approximates the L∞-norm.

3.2 Solidification velocity penalty
Our main practical goal is to avoid the appearance of hot cracks during the solidification
stage. As mentioned in Sect. 1, we associate hot cracks with high velocities of the solidifi-
cation front. We therefore seek to restrict the maximal velocity of the solidification front
by introducing a non-standard penalty term derived below.

We begin by characterizing the velocity of a point x(t) on some moving isothermal sur-
face in �; see Fig. 3. Since the temperature θ (x(t), t) is constant, we obtain

d
dt

θ
(
x(t), t

)
= grad θ

(
x(t), t

) · xt(t) + θt
(
x(t), t

)
= 0. (3.2)

The derivative xt(t) can be decomposed as

xt(t) = α
(
x(t), t

)
grad θ

(
x(t), t

)
+ component perpendicular to grad θ

(
x(t), t

)
, (3.3)

where α(x(t), t) is a scalar function. Substituting (3.3) into (3.2), we obtain

α
(
x(t), t

)
=

–θt(x(t), t)
‖grad θ (x(t), t)‖2 , (3.4)
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Figure 3 Solidification interface and its velocity during the cooling stage (sectional view)

where ‖·‖ denotes the Euclidean norm. Therefore, we can define the velocity of any isother-
mal surface passing through the point x at time t as

v(x, t) :=
–θt(x, t)

‖grad θ (x, t)‖ .

While the melting pool expands, v(x, t) takes negative values near the edge of the pool
since θt > 0 holds. When the pool shrinks, v(x, t) has positive values. We are only inter-
ested in restricting positive velocities and only within the solidus–liquidus temperature
corridor. We therefore propose the following penalty term,

Jvelocity =
βvelocity

2

∫

�×(0,T)
max

{
v(x, t) – vmax, 0

}2
χ

(
θ (x, t)

)
dx dt, (3.5)

where vmax is a predefined constant and the indicator function χ is defined as

χ (θ ) :=

⎧
⎨

⎩

1 where solidus ≤ θ ≤ liquidus,

0 otherwise.

3.3 Completeness of solidification
To ensure that the solidification stage is complete at the given final time T , we penalize
final temperatures θ (x, T) which are still above the solidus temperature by means of the
following term,

Jcompleteness =
βcompleteness

2

∫

�

max
{
θ (x, T) – solidus, 0

}2 dx. (3.6)

3.4 Energy consumption penalties
The consumption of energy in the process is taken into account by means of the following
standard quadratic control cost term,

Jcontrol =
βcontrol

2
‖u‖2

L2(0,T). (3.7)

Indeed, an L1-norm penalty would be a more meaningful model of energy consumption.
Such a term is known to induce sparsely supported controls, see for instance [5, 15, 18].
In the present application, however, optimal power profiles may then require the laser
to be switched off and on again. Technical limitations require a certain amount of time
before the laser can be powered up again, which is not feasible due to the brevity of the
usual process times T in single-spot welding. Moreover, a waiting-time constraint would
render the optimal control problem significantly more difficult.
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3.5 Optimal control problem formulation
For convenience, we summarize our single-spot welding optimal control problem as fol-
lows:

Find a control function u : [0, T] →R which minimizes the objective

J(u, θ ) := Jpenetration(θ ) + Jvelocity(θ ) + Jcompleteness(θ ) + Jcontrol(u),

where θ is the solution to the boundary value problem (2.1)–(2.3)

and the control satisfies the constraints 0 ≤ u(t) ≤ 1 on [0, T].

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.8)

4 Discretization and optimization scheme
In this section we describe a discretization of problem (3.8) as well as a projected gradient
descent scheme for its numerical solution. Since the discretization in space is based on
a finite element approach, we begin with the notion of weak solution. Notice that our
definitions are informal since we do not aim to provide a thorough analysis of the forward
system (2.1)–(2.3) here.

4.1 Weak formulation
As usual, the weak formulation is obtained by multiplying (2.1) by a test function, inte-
grating by parts, and plugging in the natural boundary conditions (2.3). Abbreviating

�
(
θ (x, t)

)
:= k

(
θ (x, t)4 – θ4

amb
)

+ h
(
θ (x, t) – θamb

)
,

we thus arrive at the notion that a function θ : � × [0, T] → R is a weak solution to the
boundary value problem (2.1)–(2.3) if it satisfies the initial condition (2.2) and the equality

∫

�

s
(
θ (x, t)

)
θt(x, t)v dx dt +

∫

�

grad θ (x, t)Tκ
(
θ (x, t)

)
grad v dx dt

+
∫

�1∪�2∪�4

�
(
θ (x, t)

)
v dS dt –

∫

�1

ηpdmaxu(t)v dS dt = 0 (4.1)

holds for all functions v ∈ C∞(�) and for almost all t ∈ (0, T). Notice that dx denotes
integration w.r.t. the volume measure and dS is w.r.t. the surface measure. Recall that the
thermal conductivity κ(θ ) is a matrix due to different conductivities in radial and axial
directions, see Sect. 2.2.

4.2 Reduction to the radially symmetric case
Up to this moment the problem was considered in R

3. However, the power density of the
laser beam is taken to be radially symmetric, and there is no heat transition in � in the
angular direction, i.e. ∂θ/∂ϕ = 0. This motivates us to reduce the computational complex-
ity of the problem by reducing the domain � to its two-dimensional radial section ω, see
Fig. 4.

From now on, we replace θ (x, t) by θ (r, z, t); see Fig. 1 for the coordinate axes. Thus, (4.1)
turns into

∫

ω

s
(
θ (r, z, t)

)
θt(r, z, t)vr dr dz dt
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Figure 4 Reduction to the radially symmetric case

+
∫

ω

grad θ (r, z, t)Tκ
(
θ (r, z, t)

)
grad vr dr dz dt

+
∫

γ1∪γ2∪γ4

�
(
θ (r, z, t)

)
vr ds dt –

∫

γ1

ηpdmaxu(t)vr ds dt = 0 (4.2)

for all v ∈ C∞(ω) and for almost all t ∈ (0, T). Notice that the gradient operator in equa-
tion (4.2) must be used in its cylindrical form, i.e.,

grad θ (r, z,ϕ) =
∂θ

∂r
er +

∂θ

∂z
ez +

1
r

∂θ

∂ϕ
eϕ .

However, as mentioned before, due to the radial symmetry of the heat distribution, the eϕ-
component of θ vanishes. This feature is convenient for the numerical implementation,
since the standard gradient operator (in Cartesian coordinate form) can be used. In (4.2),
we now denote the surface measure of the two-dimensional cross-sectional domain ω by
ds. Notice that the integrals in (4.2) and in the following incur an extra factor r due to the
coordinate transformation.

Similarly, two of the penalty terms in the objective in (3.8) are affected by the transition
to cylindrical coordinates. Specifically, (3.5) and (3.6) now take the following forms:

Jvelocity =
βvelocity

2

∫

ω×(0,T)
max

{
v(r, z, t) – vmax, 0

}2
χ

(
θ (r, z, t)

)
r dr dz dt, (4.3)

Jcompleteness =
βcompleteness

2

∫

ω

max
{
θ (r, z, T) – solidus, 0

}2r dr dz. (4.4)

4.3 Discretization of the forward problem
We now focus on discretizing the problem in time and space in order to solve it numeri-
cally. We combine a finite element method in space with a finite difference method in time.
The numerical implementation is based on the FEniCS computing platform; see [11].

Let Nt be the number of equidistant time steps excluding the initial state, then we denote:

τ := T/Nt , un := u(nτ ), θn(r, z) := θ (r, z, nτ ),

θn+α(r, z) := αθn+1(r, z) + (1 – α)θn(r, z),

where α ∈ [0, 1] determines the degree of implicitness of the time scheme.
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Within the time interval (nτ , nτ + τ ], the coefficients and the operators of equation (2.1)
are discretized as follows:

s
(
θ (r, z, t)

)
:= s(θn), κ

(
θ (r, z, t)

)
:= κ(θn), �

(
θ (r, z, t)

)
:= �(θn+α),

θt(r, z, t) :=
θn+1 – θn

τ
, grad

(
θ (r, z, t)

)
:= grad(θn+α).

For the discretization in space, we employ piecewise linear, globally continuous test and
trial functions on a predefined mesh of ω. Now the discretized form of equation (4.2) reads
as follows,

Nt–1∑

n=0

∫

ω

s(θn)(θn+1 – θn)vnr dr dz + τ

Nt–1∑

n=0

∫

ω

grad θT
n+ακ(θn) grad vnr dr dz

+ τ

Nt–1∑

n=0

∫

γ1∪γ2

�(θn+α)vnr ds – τ

Nt–1∑

n=0

∫

γ1

ηpdmaxunvnr ds = 0. (4.5)

In (4.5) we set θ0 := θamb. We then solve (4.5) time step by time step for the unknown
coefficient vectors θ1, θ2, . . . , θNt .

4.4 Discretization of the objective functional
To derive the discrete version of Jpenetration, we discretize the Lp-norm in (3.1) according to

∥
∥θ (xtarget, ·)

∥
∥

Lp(0,T) ≈
(

τ

Nt∑

n=1

∣
∣θn(0, ztarget)

∣
∣p

)1/p

= τ 1/p∥∥
{
θn(0, ztarget)

}Nt
n=1

∥
∥

lp .

In fact, the factor τ 1/p, which tends to one as p tends to infinity, can be compensated by
adjusting the coefficient βpenetration, so we implement the following discrete version of (3.1):

Jpenetration =
βpenetration

2

{( Nt∑

n=1

∣
∣θn(0, ztarget)

∣
∣p

)1/p

– θtarget

}2

. (4.6)

A detailed discussion on the choice of p is given in Sect. 5.3.
The velocity of an isothermal surface (in fact an isothermal line after dimension reduc-

tion) can be approximated as

v(θn, θn+1) =
–(θn+1 – θn)
τ‖grad θn+α‖

and hence Jvelocity takes the following form:

Jvelocity =
βvelocity

2
τ

Nt–1∑

n=0

∫

ω

max
{

v(θn, θn+1) – vmax, 0
}2

χ (θn, θn+1)r dr dz (4.7)

where the discretized indicator function χ is defined as

χ (θn, θn+1) :=

⎧
⎨

⎩

1 where solidus ≤ θn and θn+1 < liquidus,

0 otherwise.
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The remaining penalty terms Jcompleteness and Jcontrol are discretized according to

Jcompleteness =
βcompleteness

2

∫

ω

max{θNt – solidus, 0}2r dr dz, (4.8)

Jcontrol =
βcontrol

2
τ

Nt–1∑

n=0

u2
n. (4.9)

4.5 Evaluation of the gradient
In this section we briefly describe the evaluation of the gradient by means of the discrete
adjoint state p = [p0, p1, . . . , pNt–1]. To this end, we introduce the Lagrangian

L(θ , u, p) := J(θ , u) +
Nt–1∑

n=0

∫

�

s(θn)(θn+1 – θn)pn dx

+ τ

Nt–1∑

n=0

∫

�

grad θT
n+ακ(θn) grad pn dx

+ τ

Nt–1∑

n=0

∫

γ1∪γ2

�(θn+α)pn ds – τ

Nt–1∑

n=0

∫

γ1

ηpdmaxunpn ds. (4.10)

The sequence of linear systems governing the discrete adjoint state is obtained from
∂L(θ , u, p)/∂θn = 0. We do not provide the explicit formula for the adjoint equation here
since in the code we derive it using FEniCS’ built-in automatic differentiation capabilities.
Although the penalty terms (3.5) and (3.6) contain the non-differentiable term max{0, ·}
in their structure, the entire expressions are indeed of class C1 and their discrete coun-
terparts (4.7) and (4.8) can be processed by the automatic differentiation in the naive way.
The only manual differentiation required is for the penalty term Jpenetration in (4.6), since
in contrast to the other terms, it cannot be split into a sum over the time steps. We added
the contributions coming from this term manually to the adjoint state’s right hand side.
One can find more details in [16, optipuls.core].

Finally, we differentiate L(θ , u, p) with respect to u = [u0, u1, . . . , uNt–1] in the direction
δu = [δu0, δu1, . . . , δuNt–1] to obtain

∂L(θ , u, p)
∂u

δu = τ

Nt–1∑

n=0

[

βcontrolun –
∫

γ1

ηpdmaxpn ds
]

δun.

Consequently,

gradu L(θ , u, p) = βcontrolu –
∫

γ1

ηpdmaxp ds (4.11)

holds.

4.6 Projected gradient descent scheme
To find the optimal control for the discretized counterpart of (3.8), we apply a projected
gradient descent scheme with line search; see, e. g., [4, 6] or [7, Chap. 5.8.2]. To this
end, we denote by j(u) = J(u, θ ) the reduced objective, which depends only on the values
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Algorithm 1: Projected gradient descent scheme
Input: uinitial ∈R

Nt

Output: uoptimized ∈R
Nt

1 ucurrent ← uinitial

2 while stopping criterion is not satisfied do
3 solve the forward system (4.5) for θ , given ucurrent

4 solve the adjoint system for p, given θ and ucurrent

5 evaluate the gradient of the reduced objective gradu j(ucurrent) from (4.11)
6 repeat
7 perform projected Armijo line search for the step size α, i.e., set
8 utrial ←P[0,1](ucurrent – α gradu j(ucurrent))
9 until j(utrial) ≥ j(ucurrent) – σα‖gradu j(ucurrent)‖2

10 ucurrent ← utrial

11 return uoptimized ← ucurrent

u = [u0, u1, . . . , uNt–1] of the control since the solution θ = [θ1, θ2, . . . , θNt ] to the forward sys-
tem (4.5) has been inserted. Since this procedure is well known, we present only a short
general outline in Algorithm 1. The norm in which the size of the gradient is evaluated
is the norm represented by τ times the identity matrix. More details can be found in the
implementation at [16, optipuls.optimization].

The stopping criterion was considered satisfied as soon as any of the following condi-
tions were met:

∥
∥PA gradu j(ucurrent)

∥
∥ < tolerancegrad,

‖utrial – ucurrent‖ < tolerancecontrol,

1 – J(utrial)/J(ucurrent) < tolerancedescent rate,

iteration no. > M.

Here PA is the point-wise projection onto the tangent cone to the feasible set in
L2(0, T ; [0, 1]) at ucurrent, i.e.,

An =

⎧
⎪⎪⎨

⎪⎪⎩

(–∞, 0] if (ucurrent)n = 0,

(–∞,∞) if 0 < (ucurrent)n < 1,

[0,∞) if (ucurrent)n = 1.

5 Numerical results
In this section we present some optimized laser pulses, i.e., numerical solutions to the
discretized counterpart of the single-spot welding optimal control problem (3.8). We em-
phasize that all numerical results presented in this paper are fully reproducible and hence
can be verified by the reader; see [17] for further instructions.

The common problem parameters shared by the numerical experiments presented in
this section are provided in Table 1 (see also [17, env/problem.py]). These parameters
describe the EN AW 6082-T6 aluminum alloy. These values as well the reasonable intervals
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Table 1 Parameters of the numerical experiments

space domain
radius of the cylinder � 2.5 mm
height of the cylinder � 0.5 mm
radius of the laser beam 0.2 mm

equation and boundary conditions
ambience temperature θamb = 295 K
convective heat transfer coefficient h = 20 W/m2

radiative heat transfer coefficient k = 2.26 · 10–9 W/m2K4

objective functional
welding penetration penalty coefficient βpenetration = 10–2

solidification velocity penalty coefficient βvelocity = 1.5 · 10–1
welding completeness penalty coefficient βcompleteness = 10–12

energy consumption penalty coefficient βcontrol = 102

target point ztarget = 0.125 mm
target maximal temperature at the target point θtarget = 1048 K
p-norm in time domain p = 20

material properties
solidus point 858 K
liquidus point 923 K
enthalpy of fusion 397000 J kg–1

coefficients s(θ ) and κ (θ ) discussed in Sect. 2, see Fig. 2

for the pulse duration and maximal laser power were selected after experiments carried
out by the Department of Production Technology, TU Ilmenau, Germany.

Notice that the target temperature θtarget in Table 1 is intentionally set higher than the
desired maximal temperature at the target point (liquidus = 923 K), see Sect. 5.3 for further
details.

5.1 Conventional and linear rampdown pulse shapes
Conventional pulsed laser welding strategies use a rectangular laser pulse shape, i.e. the
laser is working full power for a short time and is switched off immediately after. Unfortu-
nately, this simple strategy often leads to hot cracking when applied to aluminum alloys.
A so-called linear rampdown pulse shape, i.e. when the laser power is decreasing linearly
after a short period of working full power, has shown its potential to obtain a crack-free
welding of aluminum alloys; see [9, 19]. However, rampdown pulses are not likely to be
optimal with respect to any of the criteria established in Sect. 3.

In view of this we first consider the conventional (5 ms of 1500 W) and the linear ram-
pdown (5 ms of 1500 W, 5 ms of rampdown) pulse shapes as the initial guess uinitial for
the optimizer. In both of these experiments the maximal laser power PYAG is limited by
2000 W and the total time T is limited by 12 ms. Figure 5 demonstrates the correspond-
ing solutions to the optimal control problem obtained with Algorithm 1. The numerical
reports on the corresponding simulations are presented in Table 2. Notice that an imper-
fect match between the evaluated welding depth and the Jpenetration penalty is due to the
p-norm approximation to the sup-norm of θ (xtarget, ·), see (5.1). We observe that in both
cases, we obtain apparently locally optimal pulse shapes which differ very little from their
respective initial guesses.

5.2 Optimizations from zero initial guess
In the search to obtain better pulse shapes, we now begin with the trivial initial guess
uinitial ≡ 0, i.e., no power radiated by the laser. With this initial guess, the target temper-
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Figure 5 Solutions to the optimal control problem with conventional (left) and linear rampdown (right) pulse
shapes taken as initial guesses

Table 2 Numerical report on simulations with the conventional and the linear rampdown pulse
shapes, and locally optimal pulse shapes * starting from corresponding initial guesses

Pulse shape Welding depth Jpenetration Jvelocity Jcompleteness Jcontrol Jtotal

conventional 0.11875 0.9758 278.9010 0.0000 0.1406 280.0173
rampdown 0.11875 2.4323 0.0055 0.0000 0.1889 2.6267
conventional * 0.11875 0.8611 27.2947 0.0000 0.1413 28.2972
rampdown * 0.11250 0.0001 0.0000 0.0000 0.1674 0.1675

ature is clearly not reached and the term Jpenetration, see (4.6), drives the pulse shape away
from its initial value. Figure 6 shows the corresponding solutions to the optimal control
problem with variable maximal laser power PYAG and maximal time T until a full solidifi-
cation. The corresponding numerical reports are presented in Table 3.

To give the reader some idea on the performance of the optimizer, the runtime of the gra-
dient descent procedure was measured for the problem corresponding to PYAG = 1800 W,
T = 15 ms. The descent terminated after 15 iterations by the “descent rate” stopping cri-
terion and it took 175 s. The temperature state had 4837 spatial degrees of freedom. The
computations were carried out on a workstation with an AMD Ryzen 9 5950X CPU.

5.3 Impact of the p-norm approximation to the sup-norm on the temperature
control

The choice of the value of p in the p-norm approximation to the sup-norm has significant
impact on the accuracy within which the maximal temperature at the target point xtarget

can be controlled via penalty term (3.1).
Figure 7 shows solutions to a sequence of optimal control problems employing succes-

sively increasing values of p and Table 4 shows the actual maximal temperature reached
at the target point. The zero initial guess is taken for the smallest value of p and each sub-
sequent problem utilizes the previously computed optimal control as the initial guess. In
the limiting case p = ∞, the penalty term (4.6) is replaced by

Jpenetration =
βpenetration

2

{
max

n=1,...,Nt

{
θn(0, ztarget)

}
– θtarget

}2
.

This term is only directionally differentiable, which however did not cause difficulties dur-
ing the optimization.
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Figure 6 Solutions to the optimal control problem with zero initial guess with the maximal laser power
varying vertically and the maximal welding time varying horizontally

Table 3 Numerical report on the series of optimizations with zero initial guess

PYAG T Welding depth Jpenetration Jvelocity Jcompleteness Jcontrol Jtotal

1500 0.010 0.11875 0.0243 0.0958 0.0000 0.2522 0.3724
1500 0.015 0.11875 0.0002 0.0000 0.0000 0.2530 0.2532
1500 0.020 0.11250 0.0000 0.0000 0.0000 0.2640 0.2640
1800 0.010 0.12500 0.0000 0.0000 0.0000 0.1639 0.1640
1800 0.015 0.11875 0.0001 0.0000 0.0000 0.1741 0.1741
1800 0.020 0.11250 0.0000 0.0000 0.0000 0.1846 0.1846
2100 0.010 0.12500 0.0001 0.0000 0.0000 0.1206 0.1207
2100 0.015 0.11875 0.0000 0.0000 0.0000 0.1302 0.1302
2100 0.020 0.11250 0.0001 0.0000 0.0000 0.1375 0.1375

Although higher values of p bring more accurate control of the welding penetration, they
lead to a side effect which is rather undesirable for the practical application: solutions to
the corresponding optimal control problems tend to demonstrate faster growth and higher
peaks comparing to those evaluated for smaller values of p. Due to higher laser beam
power density such power profiles can form a so-called key hole structure and therefore
trigger a transition from the heat conduction welding to the deep penetration welding, see
[20]. While deep penetration laser welding has its own applications, such transitions are
strictly avoided in the current study.

Moreover, higher values of p used in optimizations from zero initial guess described in
Sect. 5.2 lead to solutions showing higher solidification velocity rates and corresponding
penalties. Therefore our strategy is to compensate smaller values of p by setting the target
temperature θtarget higher than the actual desired maximal temperature at the target point.
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Figure 7 Solutions to a sequence of optimal control problems with variable parameter p. Zero initial guess is
taken for the smallest value of p and each subsequent problem utilizes previously computed optimal control
as the initial guess

Table 4 Maximal temperature at the target point depending on variable parameter p

p 20 30 40 50 60 70 80 ∞
θmax 879 955.2 986.6 1003.3 1013.5 1020.4 1025.2 1048.0

As one can see from the following inequality

∥
∥
{
θn(0, ztarget)

}Nt
n=1

∥
∥

lp ≤ N
1
p

t
∥
∥
{
θn(0, ztarget)

}Nt
n=1

∥
∥

l∞ , (5.1)

it is enough to set N1/p
t · liquidus as the target temperature in (4.6) to ensure that the

liquidus temperature was reached at the target point, however the exact value was chosen
by trial and error.

5.4 Discussion of the obtained numerical results
One can see from Table 2 that the conventional pulse shape is far from being optimal since
it leads to enormous solidification velocity penalties Jvelocity, which dominate the total value
of the objective. Even though the local minimizer reached from the conventional pulse
shape as a starting point achieves a decrease in the objective by one order of magnitude,
the value of the solidification penalty Jvelocity corresponding to the formation of hot cracks
is still unacceptably large. On the other hand, the linear rampdown pulse shape achieves
a reduction of the solidification velocity and the local minimizer reached from there is
even able to keep this velocity within the permitted limit vmax so that Jvelocity is zero. A
successful crack-free welding of aluminum alloys using the linear rampdown pulse shape
was confirmed experimentally, see [9, 19].

However, the results of optimizations with zero initial guess in Table 3 show that further
optimization is still possible and the optimal pulse shapes are quite non-trivial to guess by
trial and error. One can see from Table 3 and Fig. 6 that reasonably small penalty values can
be obtained only if the optimizer has enough room to adjust the pulse shape in time and
power dimensions, though smaller pulse durations are generally prefered in the industry
since they allow faster welding.
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In the pulse shapes limited by 10 ms, the small swing-ups close to the end appear as a
result of compensation of the too high solidification velocity. Despite of the fact that such
pulse shapes are local optimizers for the discrete version of (3.8), they do not seem rea-
sonable for the practical application. For the optimization problem under consideration
with the setup as in Table 1, the most promising optimal pulse shape would be the one
obtained with a maximal laser power of 2100 W and total time of 15 ms.

Preliminary laboratory experiments carried by the Department of Production Technol-
ogy, TU Ilmenau, confirmed that the pulse shapes optimized from zero initial guess can
indeed be used to produce crack-free welds. These results will be presented in a separate
paper.
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